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Relation between the Compression Yield 
Stress and the Mechanical Loss Peak of 
BisphenoI-A-Polycarbonate in the p 
Transition Range 

J. C. B A U W E N S  
Institut des Matdriaux, UniversitO Libre de Bruxelles, Belgium 

The compression yield behaviour of polycarbonate, at constant strain-rate, over a wide 
range of temperatures, is described by the Ree-Eyring theory of non-Newtonian viscosity 
linked with a treatment which takes into account a distribution function of activation 
energies. 

The proposed yield mechanism relies on the assumption that the fl process considered 
in the Ree-Eyring theory and the loss peak revealed by oscillatory measurements are 
related to the same molecular movements. 

A relation is given between the fl transition conditions in yield measurements and in 
damping tests; its validity is checked. 

The broadness and the shape of the fl loss peak are correlated with a spectrum of 
activation energies. 

The compression yield-stress curve, giving the yield stress versus temperature at 
constant strain-rate, is computed from the measurements of the loss tangent, as a function 
of temperature, at the frequency corresponding to the strain-rate and is found to fit the 
data fairly well. 

1. Introduction 
Polycarbonate possesses a low temperature 
secondary transition which has been revealed by 
miscellaneous techniques such as nuclear mag- 
netic resonance, dielectric and mechanical losses, 
shear creep and stress relaxation. The experi- 
mental results obtained by different methods are 
reviewed in the paper by Locati and Tobolsky [1 ]. 

It is the purpose of the present paper to show 
that the study of the yield stress of polycarbonate 
over a wide range of temperatures and strain- 
rates, is also of use in revealing the secondary 
transition. 

In our laboratory, it was previously proposed 
[2] to describe the yield behaviour of glassy 
polymers by the Ree-Eyring modification of the 
non-Newtonian viscosity theory [3]. It is 
supposed that two rate-processes, denoted c~ and 
fl, are involved in the deformation at yield. 
These two processes are characterised by a 
constant activation energy. The value of the 
activation energy related to the/~ process, found 
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by this method, for at least five glassy polymers, 
agrces quite well with the value associated with 
the secondary transition reported from other 
types of measurements [4-6]. This fact suggests 
that the molecular movements are the same in 
both cases. 

We intend here to show the correlation 
between the shape of the mechanical loss peak 
observed in damping tests, at low temperatures 
for polycarbonate, and the compression yield 
stress curve giving the value of the yield stress as 
a function of temperature at constant strain-rate. 
We have previously proposed such a correlation 
for PVC [7]. We want now to give a more 
accurate theoretical treatment and to check the 
validity of the resulting relations using the fl 
transition conditions of polycarbonate. 

In this investigation an attempt has been made 
to link together the Ree-Eyring theory which is 
useful to describe the compression yield behaviour 
at constant strain-rate over a wide range of 
temperatures, and the irffluence of a distribution 
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Figure 1 Plot of  the engineering yield stress in uniaxial compression 1%I and in tensi le tests a t versus tempera- 
ture at a constant strain-rate ~ = 4.16 • 10 -s sec -1. The curves are generated from equations 1 and 2 using the 
constants given in table I. 

of activation energies which allows one to obtain 
a more accurate correlation in the/3 transition 
region. 

2. Exper imenta l  
The tensile and uniaxial compression data are 
taken from previous results obtained in our 
laboratory [6]. The engineering yield stresses, 
taken as the first maximum of  the stress-strain 
curve divided by the initial cross-section of  the 
specimen, are plotted versus temperature in 
fig. 1. All the tests were performed at the same 
strain-rate: ~ = 4.16 • 10 -s sec -t. 

At this strain-rate, we knew that the /3 
transition of polycarbonate is located at about 

- 80~ [6]. On the other hand, the loss tangent 
peak, measured at 1 cps reaches its maximum 
value at about - 100~ [1 ]. We decided then to 
perform damping tests around 1 cps in order to 
reveal the/3 transition in the same temperature 
range as in tensile and compression tests. 

The damping tests were performed using a 
free-osciUation torsional pendulum operating 
with samples having dimensions of 11 x 1.5 • 
0.2 cm 8. 

The samples were cut from the same plate of 
polycarbonate (Makrolon, Bayer) as the tensile 
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and compression specimens. 
The pendulum was set at room temperature at 

two different frequencies around 1 cps; 0.455 
and 2.08 cps. Then, in both cases, the apparatus 
was placed in an environmental chamber and the 
loss tangent was measured as a function of  
temperature from - 160 to - 20~ 

The data are reported in fig. 2 where it is seen 
that in both cases the shape of the peak and the 
maximum value of the loss tangent are nearly the 
same. 

3. Theoret ica l  Considerat ions 
The curves of  fig. 1 are taken from a previous 
paper [6]. They were generated using the 
following equations: 
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Figure2 Loss tangent of polycarbonate versus temperature in the/~  transition range. The frequency varied from 0.63 
cps at the lowest temperatures to 0.48 cps at the highest (curve a) and from 3 cps to 2.2 cps (curve b). 

where at and ae are the measured tensile and 
compression yield stresses; at=, ac= and ate, ac~ 
are the a and t3 contributions to the tensile and 
to the  compression yield stresses; Ate, Ae=, C= 
and Ate, Ae,8, Cp are constants and Q= and Qp 
are the activation energies respectively related to 
the o~ and the /3 processes; T denotes absolute 
temperature and R is the universal gas constant. 

The values of  the parameters were estimated 
from the best fit of  equations 1 and 2 to the data 
previously obtained [5, 6]; they are recalled in 
table I. 

T A B L E  I Constants of equations 1 and 2 for  poly- 
carbonate [5, 6] 

process  ~ p rocess  

Q~ = 75.5 kcal mole -~ 
C~ = 2.40 x 10 -sl sec 
Atc~ = 4.35 x 10 -4 kg 

rnlTl -~ . K -1 

A%~ = 5.70 X 10 -4 k g  

mm -~ . K -~ 

Qfl = 9.6 kcal mole -1 
Co = 2.76 x 10 -9 sec 
Atfl = 1.33 x 10 3kg 

mm -2 . K-1 
Aefl = 5.57 x 10 -3kg 

mm -~ . K-1 

Equations 1 and 2 were derived from the 
Ree-Eyring theory [3] and from a yield criterion 
previously established [8, 9]. The derivation 
relies on the following assumptions; 1. both 
processes move at yield at the same average rate, 
the stresses being additive, 2. the yield criterion 
is applied separately to each process. 

The curves, expressed by equations 1 and 2, 
representing the variation of the tensile and 
compression yield stresses with temperature at 
constant strain-rate (see fig. 1), admit two 
asymptotes which intersect at two points having 
the same abscissa denoted as Tp in the following 
relation: 

QP (3) 
T/~ - R In 2C~ 

From equations 2 and 3, for tests performed 
at the same strain-rate, we can write, for a first 
approximation, that: 

ae~ = Aef In 2C~ ~ = K = constant 
0 T  

for T < Tg (4) 
and 

8 aep _ 0 for T > T~ (5) 
S T  

Therefore, pairs of  values of  temperature and 
strain-rate which satisfy equation 3, represent the 
/3 transition conditions revealed by tensile or 
compression yield stress measurements when a 
single activation energy Qg is considered. 

For the constant strain-rate chosen here and 
the values of  the constants of  equation 3 given 
in table I, T~ was found to equal - 77 ~ C. 

Let us assume, now, that the molecular 
movement  related to the/3 process considered in 
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the Ree-Eyring theory is the same as the one 
associated with the/3 mechanical loss peak. The 
activation energies found in both types of 
measurements have similar values (see equation 
24 and table I). 

GO 

Figure 3 Simple three-element model used to describe, for 
a first approximation, the mechanical behaviour of 
polycarbonate in the t3 transition range. 

The response of a high polymer to free 
oscillation torsional tests, may be calculated, for 
a first approximation, using the simple three- 
element model of fig. 3; where Go means a spring 
of high modulus representing the elasticity when 
both a and /3 processes are frozen in, 
(Go G~)/(Go + G~) equals the shear modulus 
when /3 is completely free and ~ is completely 
frozen in, and ~/p denotes the Newtonian 
viscosity of the/3 process. We may assume that 
Gp >> Go because the loss tangent is very small 
compared to unity. Let tg 3 denote the loss 
tangent, its expression is: 

tg ~ - Go co co~ (6) 
Gp(co2 + co2) 

where co and cob are the radian frequency and the 
characteristic radian frequency respectively, 
with: 

cop = G____~ (7) 
~B 

The quantity ~Tfl may be expressed as a 
function of temperature using Eyring's equation 
which gives Newtonian viscosity when the stress 
is small: 

A B C ~ T  (QD) 
r//~ = x/3 exp R---T (8) 

where A B is a constant. 
Let us consider the value of the characteristic 

radian frequency related to free oscillation 
torsional tests conducted at the temperature T~ 
defined by equation 3. From equations 3, 6, 7 
and 8, we obtain the relation between the 
frequency and the strain-rate at which the 
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transition of a fi element having an activation 
energy equal to Qp, occurs at temperature Tp: 

2 47 G~ . 
, (9) 

wy - A~ Tfl 

In order to improve the approximation, we 
will consider, now, a distribution of activation 
energies P (Q) expressed by: 

f o~ (Q) dQ = (10) P 1 
0 

and whose half-width value is denoted as A Q. 
If one takes into account such a distribution, 

equation 4 becomes: 

~ep = K P (Q) dQ (11) 
T QT 

where QT denotes the activation energy of an 
element whose/3 transition occurs at temperature 
T. 

The problem arises how the P (Q) function 
is to be calculated from experimental data. We 
propose to obtain the shape of this function 
from the measure of the loss tangent versus 
temperature in the/3 transition range. Using the 
concept of a distribution of activation energies, 
the extension of the derivation which led to 
equation 6, gives: 

G ~  cocoD -dQ (12) tg 3 = ~- e (Q) w2 + w :  2 

Equations 7 and 8 imply that: 

dQ = - R T d  (In cog) (13) 

and then, an approximation of first order of the 
loss tangent may be expressed by: 

tg ~ = r Go R T P  (Q) (14) 
2 G~ 

It results from equation 14 that (tg 3)/T is 
proportional to the distribution function of the 
activation energies. Furthermore, equation 9 
implies that: 

v T = Vmax Tmax = constant (15) 
where v denotes the frequency of the oscillations 
and Vmax and Tmax correspond to the maximum 
value of the (tg 3 (T))/T curve. 

Therefore, using the approximation that the 
maximum of P (Q) may be expressed by: 

1 
e ( a )  = A Q (16) 

it follows from equations 9 and 14 that: 
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~/3 Go R 
Vmax = 2A ~ (tg ~)max A Q ~ (17) 

where (tg 3)max is related to the maximum value 
of  the (tg 3 (T))/T curve. 

Equations 15 and 17 give as a function of g, the 
frequency at which the/3 transition occurs at the 
same temperature in tensile, compression and 
damping tests for elements having the same 
activation energy: 

Equations 7, 8 and 15 imply that: 

Q~ 
R---T = constant (18) 

which means that the/3 transition of an element 
having an activation energy equal to Q~,, occurs 
at a temperature T proportional to Q~,. Then 
from equation 18, it is possible to express the 
quantity AQ as a function of AT, the half-width 
value of the (tg 8 (T))/T curve, by: 

AT 
AQ = Tmax Qmax (19) 

where Tmax and Qm~x are the temperature and 
the activation energy corresponding to the 
maximum of the (tg 8 (T))/T curve. 

So, provided equations 15 and 17 are satisfied, 
where all the parameters can be computed from 
the data here reported (except Go which is taken 
from the literature), we can express P (Q) as a 
function of tg 8 (T). It then follows from 
equations 11 and 14 that: 

i oo tg 3 (T) dT 
8Cre~ = K ~e T 

�9 oo tg 3 (T) dT (20) 
8 T  Jo T 

Equatio'n 20 allows to state that the double 
integral 

f~176 I f  tg 3(T) T 

which can be computed from the /3 peak is 
proportional to the/3 contribution to the tensile 
or compression yield stress. This consequence of 
the proposed mechanism of yield deformation 
may be expressed from equations 1, 2 and 20, by 
writing: 

( r t (T)=  c r t~(T)+Bt  I l l ;  tg S (T) - - - f - -  dT 2 

(20 
and 

% ( T ) =  ae~(T) + Be ~T I ;  tg3(T)  

(21a) 

where Bt and Be are constants. 
We will try to cheek the validity of these last 

relations. 

4. Results 
4.1. Evaluation of A~ 
From equations 1 and 2 and from Eyring's 
equation applied to the /3 contribution to the 
shear yield stress -r~, we obtain the following 
relation: 

a t ~ _  Crew= [__g (22) 
A t fl A e fl Aft 

On the other hand, the yield criterion applied 
to the/3 process gives another relation between 
ate, ae B and ~'#, i.e. : 

~o~ + ~ p ~  = - g -  ( = 

~e--~P ( ~ ' 2 -  /xP)= "r~ ~/~ 3 (22a) 

where ~-o~ and p~ denote the /3 contribution to 
the octahedral shear yield stress and to the 
hydrostatic stress respectively and FB is a con- 
stant. 

Then, from equations 22 and 22a, using the 
values of At D and. Ae~ given in table l, we find 
the following value for A~: 

Ae~ 
A g =  

+ At~] (23) 
1.24 • 10 -3 kg mm -2 K -1 

As A.e B and At~ are evaluated from the 
engineering yield stresses, there results an error 
in the constant Ap which arises from failure to 
take elastic deformation prior to yielding into 
account. This error was evaluated using the 
treatment given previously [6] and was found to 
reach less than 4 ~ ;  therefore it may be neglected 
here according to the approximations done. 

4.2. Evaluation of Omax 
Qmax is evaluated from the data of fig. 2 and the 
Arrhenius relation. The following value is 
found 

Qmax = 9.6 kcal mo1-1 (24) 

4.3. Evaluation of Vma , 
The quantity Vmax is calculated from equation 17 
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using the following values of the constants: 

Go = 230 kg mm -~ (25) 

This value is taken from the literature [1 ]; as 
Go means the maximum value reached by the 
shear modulus at low temperature, it is expected 
to be independent of  material differences and of 
frequency. 

(tg 8)max is assumed to be nearly equal to the 
maximum of  the loss tangent. This last quantity 
does not change significantly with the frequency 
within a narrow range. After subtraction of the 
background, whose level is estimated on the 
graph to reach 5 • 10 -3, the following value is 
taken, for a first approximation: 

(tg 8)max = 3.2 • 10 -z (26) 

AQ is given by equation 19, where AT is 
obtained by iteration from the data. As a first 
approximation, we have assumed that Traax g Tp 
= - 7 7 ~  = 196K, and we have taken for 
AT the half-width value of the loss tangent peak 
measured as a function of temperature at about 
1 cps. When the background is subtracted from 
the/3 loss peak, we have found from the data of 
fig. 2, that 

A T = 80 ~ C (27) 

Then from equations 17, 19, 23, 24, 25, 26, 27 
and ~ = 4.16 • 10 -3 sec -1, a first approxima- 
tion is calculated for Vmax: 

Vmax = 10.7 cps (28) 

In order to obtain a better approximation, the 
(tg ~ (T))/T curve related to the value, equation 
28, of Vmax, is then generated from the data of 
fig. 2 using the Arrhenius relation. From this 
curve we got the following values of the con- 
stants: 

A T = 90 ~ C (29) 

T m a x  = - -  8 0 ~  = 193K (30) 

(tg ~ ) m a x  = 3.1 • 10 -2 (31) 

Putting these last values in equation 17, we 
found : 

Vmax "~ 9.5 cps (30) 

4.4. D e t e r m i n a t i o n  o f  t h e  (tg ~(T))/T C u r v e  

related to  Vma x = 9.5 cps  

The/3 loss peak related to Vm~x = 9.5 cps may be 
generated from the data of fig. 2. The resulting 
curve, from which the background has been 
subtracted, is then corrected in order to take into 
account equation 15. In fig. 4 we give the plot of 
(tg 3 (T))/T deduced from the extrapolated /3 
peak. It is seen on the graph that the half-width 
value of the curve, the temperature and the 
value of the loss tangent related to the maximum 
of the curve quite agree with equations 29, 30 
and 31 respectively. Moreover the value of  
Tmax is nearly equal to the value of Tg deter- 
mined from equation 3, which was deduced from 
the compression and tensile yield stress curves. 

In fig. 4 we have also plotted the double 

2-  

1"6- 

1-2- 

0"8- 

0"4- 

tg~ , 10 -~ K -4 
T 

Vma x = 9-5 cps 

I I I I I I 
-250 -200 -150 -100 -50  0 +50 T~ 

Figure 4 fl contribution to the (tg 3 IT))/T curve and double integral of (tg ~ (T))/T f rom T to oo. 
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integral of  (tg 3 (T))/T integrated from T to oe. 

4.5. Correlation between the Compression 
Yield Stress Curve and the Curve giving 
(tg 3(T))lT 

The determination of the curve expressed by 
equation 21 was done as follows 
1. The curve giving c% as a function of  tempera- 
ture at constant strain-rate is assumed to be a 
straight line and is extrapolated from the 
compression data obtained at temperatures 
between - 50 and + 120~ where equation 5 is 
valid. 
2. The value of the constant is chosen to obtain 
the best fit of the computed curve to the data. 

Results are given in fig. 5 where it is seen that 
the accuracy of  the fit is quite good and better 
than in fig. 1. 

Obviously, the same treatment may be 
followed to generate, from the 13 peak, the curve 
giving the tensile yield stress as a function of  
temperature at constant strain-rate, but the 
theoretical curve so calculated, and the one 
computed from equation 1 are very close 
together. Both curves fit the data fairly well. 
Therefore, in the case of tensile tests, the treat- 
ment proposed here, although it does not give a 

more accurate fit than the Ree-Eyring theory, is 
more interesting because it provides a distribu- 
tion of the activation energies in the fi transition 
range. 

5. Conclusions 
A yield mechanism, relying on the following 
assumptions, is proposed for polycarbonate. 
1. Two activated flow processes, ~ and 13, 
moving at the same rate, are involved in the 
deformation at yield. 
2. The fi yield process and the/3 peak revealed by 
oscillatory measurements, arise from the same 
molecular movements. 

This hypothetical yield mechanism imphes the 
following consequences. 
(a) The study of the yield stress over a wide range 
of temperatures and strain-rates must reveal the 
/3 transition. 
(b) The activation energies respectively associ- 
ated with the/3 yMd process and the/3 loss peak 
must be equal. 
(c) If  the fi transition, revealed by yield measure- 
ments, is located at temperature T~ and strain- 
rate i, there must exist a relation between i and 
the frequency at which the/3 loss peak occurs at 
temperature Tp. 

lc~ct (kg,mm-'~ 

r 

~176 

I I . . . . . . . . . . .  I 1 ] 

- 150 - 100 - 50 0 +50 +100 +150 T~ 

Figure 5 Plot of the compression yield stress versus temperature at constant strain-rate. The data are  the 
same as in fig. 1, but the curve is generated from equation 2t. 
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(d) The broadness and the shape o f  the fl loss 
peak may be associated witll a distribution 
function o f  the fl activation energies. 
(e) The fl contr ibution to the yield stress curve, 
giving the yield stress versus temperature at 
constant  strain-rate, may be computed  f rom the 
fl peak measured as a funct ion o f  temperature at 
the corresponding frequency. 

All these consequences are checked here; the 
quite good  accuracy of  the fit confirms that  the 
proposed  treatment l inked with the Ree-Eyring 
theory, is able to describe the yield behaviour  o f  
polycarbonate  over a wide range o f  experimental 
conditions, in  tensile and in uniaxial compression 
tests. 
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